Data Science - Data Science et Machine Learning sous Python

Inter and intra-company training

Who is the training for?

Responsables Infocentre (Datamining, Marketing, Qualité...), utilisateurs et gestionnaires métiers de bases de données, futurs Data Scientists.

Duration

4,00 day(s)

Language(s) of service

EN FR

Prerequisites

Connaissances équivalentes aux stages "initiation à la programmation Python" et "introduction à la Statistique".

Goals

  • Utiliser des méthodes d’exploration de données
  • Comprendre le principe de la modélisation statistique
  • Choisir entre la régression et la classification
  • Évaluer les performances prédictives d'un modèle

Contents

La Data Science repose sur la maîtrise de techniques d'exploration de données fondamentales: statistiques descriptives, prédictives ou exploratoires. Ce stage pratique vous présentera les méthodes indispensables en Data Science, et particulièrement en Machine Learning, sous Python.

Points covered

RAPPELS DU LANGAGE PYTHON (0,25 JOUR)

  • Les types de données dans Python.
  • Importation-exportation de données.
  • Techniques pour tracer des courbes et des graphiques
  • Introduction au logiciel Jupiter Notebook

ANALYSE EN COMPOSANTES (1 JOUR)

  • Analyse en Composantes Principales
  • Analyse Factorielle des Correspondances
  • Analyse des Correspondances Multiple

LA MODÉLISATION (0,25 JOUR)

  • Les algorithmes supervisés et non supervisés
  • Le choix entre la régression et la classification
  • Les étapes de construction d'un modèle

LES ALGORITHMES NON SUPERVISES (1 JOUR)

  • Le clustering hiérarchique
  • Le clustering non hiérarchique
  • Les approches mixtes

PROCÉDURES D’ÉVALUATION DE MODÈLES (0,5 JOUR)

  • Les techniques de rééchantillonnage
  • Mesures de performance des modèles prédictifs
  • Matrice de confusion, de coût et la courbe ROC et AUC

LES ALGORITHMES SUPERVISES (1 JOUR)

  • Le principe de régression linéaire univariée
  • La régression multivariée
  • La régression polynomiale
  • La régression logistique
  • Le Naive Bayes
  • L’arbre de décision
  • Les K plus proches voisins

Teaching methods

Notre méthode, adaptée à votre contexte, associe implication des participants et supports concrets.

Certificate, diploma

Attestation de présence

Mode of organisation

En présentiel ou en classe virtuelle

These courses might interest you

EN
Day
On request
Computer science - Computer operating systems - Windows