Plans d'expérience

Inter-company training

Who is the training for?

Responsables des fonctions Assurance Qualité, Quality Control, Bureau d'Etudes et de Méthodes, Ingénierie.

Level reached

Advanced

Duration

3,00 day(s)

24 heures (Soit trois journées de 08h30 à 17h00)

Language(s) of service

FR

Next session

12.06.2025
Location
Gosselies

Price

1200,00€

Prerequisites

Avoir une pratique des statistiques de base (moyenne, variance, distribution normale).

Un esprit logique et une compréhension des outils mathématiques permettent de suivre la formation avec plus d’aisance.

Venir en formation avec un pc portable muni d’Excel et une version démo du logiciel Minitab (version Desktop et non version en ligne) à installer si possible la veille de la formation (car validité de 30 jours).

Goals

Après la formation, les participants seront capables de:

  • Distinguer les situations justifiant la création d'un plan d'expérience (DOE)
  • Expliquer les avantages d'un DOE à une équipe de projet
  • S'associer à un expert ou à un statisticien qui les aidera à concevoir, à mettre en oeuvre et à analyser un plan d'expériences
  • Expliquer les résultats de l'expérience à une équipe

Contents

1. Rappels statistiques
  • Type de données
  • Concepts statistiques de base
  • Paramètres de position et de dispersion
  • Distribution normale et propriétés
  • Variable Z, table de la loi normale et théorème central limite
  • Tableaux avec outils graphiques et statistiques.
2. Introduction aux plans d'expérience (Design Of Experiments).
  • Observation vs expérimentation.
  • Limitations des données naturelles et historiques.
3. Exercice de simulation d'un processus de production (partie I).
  • Simulation d'un processus de production d'un pain avec 7 paramètres, exercice en sous-groupes de 3 à 4 participants, utilisation d'un modèle mathématique.
  • Prise de conscience des limitations de l'approche classique un facteur à la fois.
4. Approche factorielle des plans d'expériences
  • Terminologie et notations.
  • Équilibre et orthogonalité d'un plan d'expérience.
5. Conception et réalisation d'un plan factoriel complet: exemple MSD 2
  • Identification des réponses et des facteurs, choix des niveaux des facteurs.
  • Sélection et création d'un plan avec Minitab.
  • Notions de répétition et réplication.
  • Nécessité d'exécuter les essais dans un ordre aléatoire.
  • Intérêt d'avoir des points centraux.
6. Analyse d'un plan d'expériences: exemple MSD
  • Rechercher les problèmes dans les données ou le modèle.
  • Identifier les effets significatifs d'un point de vue statistique.
  • Visualiser les effets sur la réponse au moyen des diagrammes d'effets principaux et d'interactions: importance des interactions entre facteurs dans les processus.
  • Méthodes de quantification des effets.
  • Notion de résidus ou valeurs résiduelles et hypothèses à vérifier concernant les résidus.
  • Exploitation de la table d'analyse de variance et des indicateurs tels que le R-carré ajusté.
  • Réduction du modèle et équations de prévision (unités codées ou non).
  • Conclusions, interprétation physique, essais de vérification et recommandations.
  • Calcul de puissance pour dimensionner les plans d'expériences.
7. Réduction des essais expérimentaux: fraction 1/2 et confusion.
  • Comment réduire le nombre d'essais tout en restant efficace en termes d'informations recueillies.
  • Notions de confusion et de résolution.
8. Réduction des essais expérimentaux: autres plans fractionnaires.
  • Stratégie de choix d'un plan approprié.
  • Inconvénients des plans de screening.
9. Plans factoriels complets avec plus de deux niveaux.
10. Planification et préparation d'une expérience.
  • Check liste pour aider à la préparation, la réalisation et l'analyse d'un plan d'expériences.
11. Exercice de simulation d'un processus de production (partie II).
  • Exercice en sous-groupe de création et de réalisation d'un plan d'expériences sur le processus de production du pain en tenant compte et en étant cohérent avec ce qui avait été appris lors de la première partie de l'exercice.
  • Débriefing de chaque groupe au niveau stratégie et résultats, comparaison des deux approches (parties 1 et 2).
12. Plans de surface de réponse
  • Modélisation d'un processus avec effets non linéaires au moyen d'un modèle quadratique complet.
  • Plans composites centrés.
  • Optimisation de réponses multiples.
  • Partie 3 de l'exercice du pain (optimisation des paramètres et robustesse).
13. Résumé et procédure d'expérimentation
  • Stratégie d'expérimentation et recherche de la robustesse.

Teaching methods

Une étude de cas simulant un processus réel sera utilisée tout au long de la formation avec chaque jour une phase de travail en sous-groupes avec débriefing.

Evaluation

Évaluation continue en cours de formation via questionnement, feedback et synthèses régulières.

Utilisation de résumé en début de la seconde journée de formation.

Certificate, diploma

Des attestations de participation seront envoyées, par email, aux participants après la formation s’ils ont participé intégralement à celle-ci et seulement après paiement de la facture qui y est relative.

Next session

Datum
City
Language and price
12.06.2025

16.06.2025
Gosselies
FR 1200,00€

These courses might interest you